2-4: Solving Multi-Step Equations

EXERCISE 1

SHOPPING Hiroshi is buying a pair of water skis that are on sale for $\frac{2}{3}$ of the original price. After he uses a \$25 gift card, the total cost before taxes is \$115. What was the original price of the skis? Write an equation for the problem. Then solve the equation.

Words: two-thirds of the price minus 25 is 115.

Variable: let p = original price of the skis.

Equation:

 $\frac{2}{3}$ p – 25 = 115 Solve: original equation

$$\frac{2}{3}$$
p = 140

$$\frac{3}{2}\left(\frac{2}{3}p\right) = \frac{3}{2}(140)$$

 $\frac{2}{3}p - 25 + 25 = 115 + 25$ Addition Property
Additive Identity, $\frac{2}{3}p = 140$ Substitution Simple
multiplicative inv Substitution (simplify

Answer: The original price of the skis was **210**

RETAIL A music store has sold $\frac{3}{5}$ of their hip-hop CDs, but 10 were returned. Now the store has 62 hip-hop CDs. How many were there originally? X=CDS

 $\frac{3}{5} = \frac{2}{5} = CDs$ remaining whole - sold

$$\frac{.4 \times +10 = 62}{10 \times -10}$$

2-4

2-4

1B. READING Len read $\frac{3}{4}$ of a graphic novel over the weekend. Monday, he read 22 more pages. If he has read 220 pages, how many pages does the book have?

Consecutive integers are integers in counting order, such as 4, 5, and 6 or n, n+1, and n+2. Counting by two will result in *consecutive even integers* if the starting integer n is even and *consecutive odd integers* if the starting integer n is odd.

TYPE	WORDS	SYMBOLS	EXAMPLE]
Consecutive	Integers that come	n, n+1, n+2,	, -2, -1, 0, 1, 2,	
integers	in counting order.	foupby ones		
Consecutive	Even integer	'		
even integers	followed by the next	n, n+2, n+4,	, -2, 0, 2, 4,	
	even integer.	so up by twos		
Consecutive	Odd integer			
odd integers	followed by the next	n, n+2, n+4,	,-1, 1, 3, 5,	
	odd integer.	Go up by two	S	
Consecutive	0011300		consecutive	
integers	even	integers	odd integer	S
+1 +1	+2	+2	+2 +2	
***	$\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1		→
0123	4 1012	3456	012345	•
- , _ 3	. () .	, , ,	, 0 1 2 3 9 5	6
h-1stiatean language to the				
n = 1st integer n = 1st even int. \ n = 1st odd int.				
h+1=2nd integer $n+2=2nd$ even int. $n+2=2nd$ odd int.				
1171- 2110 111	1,2, 1,U+X;	: 2nd even in	11. 11+2-2nd	oda IVI.
	\		1	\ L
J+1+1= N+S	12+3	+2= 11+4	n+2+2= r	17 T
- 2 - 1	. 1000 /1112		.1 -2	tai bbo k
- 21.0	integer!	= 3rd ever	n intl	C OCC ING
	J /	310.00	· · · ·]	
)		1	

EXERCISE 2

Write an equation for the following problem. Then solve the equation and answer the problem.

Find three consecutive odd integers with a sum of -51. Go up by 2

Let n =the least (smallest) odd integer. (15 τ odd) (3rd odd)

Then, n+2 = the next greater (bigger) odd integer, and n+4 = the greatest (biggest) of the three odd integers.

Words:

The sum of three consecutive odd integers (IST odd) + (2nd odd) + (3rd odd) n + (n+2) + (n+4)Equation:

n + (n + 2) + (n + 4) = -51Solve:

original equation

3n + 6 = -51

 $3n + 6 \cdot 6 = -51 - 6$

3n = -57

n = -19

combined like terms subtraction property

substitution / simplifi

division property

Substitution/simplify

If n = -19, then n+2 = -19 + 2 = -17 and n+4 = -19 + 4 = -15

12

2A. Write an equation and solve the problem.

Find three consecutive integers with a sum of 21.

n=1st integer n+1=2nd integer

Answer:

n+2=3rd integer

IST = 6 2nd=6+1=7

3rd=6+2=8

(1st) + (2nd) + (3rd) = 21

h + n + 1 + n + 2 = 21

The integers are 6,7,8.

2-4

2-4

2B. Write an equation and solve the problem.

Find three consecutive even integers with a sum of 84. Go up by 2

N = 1st even (1st even)+(2nd even)+(3rd even)=84 N + 2 = 2nd even N + n + 2 + n + 4 = 84

N+4=3rdeven

.7 + U+4=84

1st even = 26 2nd even = 26+2=28 3rd even = 26+4=30 $\frac{3n}{3} = \frac{78}{3}$

n=26

The consecutive even integers are 26,28,30.